# Example to demonstrate explicitly constructed layers in a multi-layer # neural network - from chapter 10. import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/") n_inputs = 28*28 # MNIST n_hidden1 = 300 n_hidden2 = 100 n_outputs = 10 def neuron_layer(X, n_neurons, name, activation=None): with tf.name_scope(name): n_inputs = int(X.get_shape()[1]) stddev = 2 / np.sqrt(n_inputs) init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev) W = tf.Variable(init, name="kernel") b = tf.Variable(tf.zeros([n_neurons]), name="bias") Z = tf.matmul(X, W) + b if activation is not None: return activation(Z) else: return Z X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X") y = tf.placeholder(tf.int64, shape=(None), name="y") with tf.name_scope("dnn"): hidden1 = neuron_layer(X, n_hidden1, name="hidden1", activation=tf.nn.relu) hidden2 = neuron_layer(hidden1, n_hidden2, name="hidden2", activation=tf.nn.relu) logits = neuron_layer(hidden2, n_outputs, name="outputs") with tf.name_scope("loss"): xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=logits) loss = tf.reduce_mean(xentropy, name="loss") learning_rate = 0.01 with tf.name_scope("train"): optimizer = tf.train.GradientDescentOptimizer(learning_rate) training_op = optimizer.minimize(loss) with tf.name_scope("eval"): correct = tf.nn.in_top_k(logits, y, 1) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) init = tf.global_variables_initializer() n_epochs = 40 batch_size = 50 with tf.Session() as sess: init.run() for epoch in range(n_epochs): for iteration in range(mnist.train.num_examples // batch_size): X_batch, y_batch = mnist.train.next_batch(batch_size) sess.run(training_op, feed_dict={X: X_batch, y: y_batch}) acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch}) acc_val = accuracy.eval(feed_dict={X: mnist.validation.images, y: mnist.validation.labels}) print(epoch, "Train accuracy:", acc_train, "Val accuracy:", acc_val) X_new_scaled = mnist.test.images[:20] Z = logits.eval(feed_dict={X: X_new_scaled}) y_pred = np.argmax(Z, axis=1) print("Predicted classes:", y_pred) print("Actual classes: ", mnist.test.labels[:20])